IN-SITU STRUCTURAL STUDIES OF SEMICRYSTALLINE POLYMER BLENDS USING SYNCHROTRON RADIATION

P. Thiyagarajan1, Matt Kipper2, Soenke Seifert3 and Balaji Narasimhan2

1Intense Pulsed Neutron Source, 3Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439
2Department of Chemical Engineering, Iowa State University, 2035 Sweeney Hall, Ames, IA 50011-2230

Due to their biocompatibility and amphiphilic character polyanhydrides are being studied as potential vehicles for controlled drug delivery. The design of drug delivery devices based on multicomponent polymer systems requires a detailed understanding of their phase behavior and microstructure. Hence we investigated the phase behavior of a binary polyanhydride blend composed of poly[1,6-bis(p-carboxyphenoxy)hexane] (poly(CPH)) and poly(sebacic acid) (poly(SA)) by \textit{in situ} SAXS at different temperatures. Based on the measured segmental interaction parameter from SAXS a phase diagram was predicted. The predicted phase diagram exhibits an upper critical solution temperature (UCST) of 114\textdegree C. From a time-resolved SAXS study of the isothermal crystallization kinetics of a series of polyanhydride copolymers information on the long period, lamellar thickness, and degree of crystallinity were obtained.

We wish to acknowledge the financial support from the USDOE to Ames Laboratory. This work benefited from IPNS and the use of the SAXS instrument at 12-ID at APS funded by the USDOE, BES under contract W-31-109-ENG-38 to the University of Chicago.