PHASE STABILITIES OF Zr$_2$Fe and Zr$_3$Fe HYDRIDES*

D. Chandra1, J. R. Wermer2, M. Coleman2,3, S. N. Paglieri2, J. I. Abes2, T. Udovic4, and A. Payzant5

1University of Nevada, Reno, MS 388, Reno NV 89557 USA
2Los Alamos National Laboratory, C348, Los Alamos NM 87545 USA
3Altair Technologies, 204 Edison Way, Reno NV 89502 USA
4National Institutes of Standards and Testing (NIST), Stop 8562, Gaithersburg, MD 20899-8562 USA
5Oak Ridge National Laboratory, HTML, Oak Ridge TN 37831 USA

In processing of nuclear materials, getters play an important role in removal residual amounts of tritium from nitrogen gas streams. One of the most commonly used getters is the commercial ST198 (SAES) alloy. We have performed x-ray diffraction studies on Zr$_2$Fe, ZrFe$_2$ hydrides and the commercial alloy ST198. The major phase of this alloy is Zr$_2$Fe with some other minor phases. Buttons of alloy composition Zr$_2$Fe, and Zr$_3$Fe were prepared in our laboratories and thermodynamic and in-situ crystal studies were performed. Disproportionation was observed at elevated temperatures and was responsible for the reduced capacity for hydrogen and its isotopes. High temperature X-ray diffraction studies under N$_2$/H$_2$ environment showed that alloy did not react with nitrogen to form zirconium nitrides up to ~923K. The Zr$_2$Fe hydrides were stable up to 623K, but this temperature Zr$_3$Fe hydrides have been observed during hydriding of Zr$_2$Fe. Neutron scattering studies have also shown that Zr$_2$Fe begins to transform to Zr$_3$Fe by simple annealing; suggesting that phase stability of Zr$_3$Fe at around ambient temperatures. Results of neutron scattering, in-situ X-ray diffraction, isotherms of Zr$_3$Fe, and Zr$_2$Fe at different temperatures, and issues with the Zr-Fe phase diagram will be presented [1, 2].

* Program Sponsored by Los Alamos National Laboratory
PHASE STABILITIES OF Zr$_2$Fe and Zr$_3$Fe HYDRIDES*

1. Permission to post abstract on the DXC web site: Yes

2. Speaker’s Information:

 Dhanesh Chandra
 Metallurgical and Materials Engineering
 College of Engineering
 University of Nevada, Reno
 Reno, NV 89557
 Phone: 775-784-4960
 Fax: 775-784-4316
 Email: dchandra@unr.edu

3. Preference: Poster Session

4. Session: XRD evening poster session

5. Intend to publish this paper in Advances in X-ray Analysis, Volume 49: No