The thermodynamic studies show that the mesoscopic decahedron and icosahedron multi-twinned particles are not low-energy structures for clusters that have more than 10^5 atoms. However, the decahedron and icosahedron lead particles grown with electrodeposition method consist of more than 10^{13} atoms. The growing mechanism of these pentagon-shaped particles is still unclear. For better understanding of the growing mechanism, the crystal structures of microns-sized lead mesoscopic decahedron and icosahedron particles were studied with x-ray microdiffraction at the Advance Photon Source. X-ray microdiffraction imaging with high spatial resolution (down to 200 nm) were performed to investigate the microstructure of the pentagon-shaped crystallites. The results show that the crystallographic structure of the decahedron and icosahedron particles is face-centered cubic and contains multi-twin structures. The tetrahedron unit blocks that compose a decahedron or an icosahedron particle are not necessarily perfect single crystals, exhibiting a mosaic structure whose orientation depends on the relative orientation to the crystal boundary.

Use of the APS was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Contract No. W-31-109-ENG-38.
1) Permission: Authors give DXC the permission to post this abstract on the DXC website and affiliated web sites.

2) Speaker’s information (also corresponding person)
 Yanan Xiao
 Argonne National Laboratory
 Bldg. 431 B006
 9700 S. Cass Ave.
 Argonne, IL 60439
 Phone: 630-252-7881
 Fax: 630-252-0140
 E-mail: xiao@aps.anl.gov

3) Preference: oral presentation at Microbeam Analysis
4) Plan to publish the paper in the conference proceeding.