XRD ANISOTROPIC BROADENING OF NANO PARTICLES

Yu Wang¹, Sammy Lap Ip Chan², Rose Amal³, Yan Rong Shen², Kunlanan Kiatkittipong³

1. Analytical Centre, University of New South Wales, Australia;
2. School of Materials Science, University of New South Wales, Australia;
3. School of Chemical Science and Engineering, University of New South Wales, Australia

Non-spherical nano-particles have recently become the focus of attention in many applications as they possess specific advanced properties. Anisotropic peak broadening occurs when X-ray diffraction is used to characterise those nano-particles. Typical example is β-Ni(OH)₂ nano-platelets, see the figure. This type of broadening is HKL dependent. In FWHM analysis and Rietveld refinement, additional hkl dependent broadening is used:

$$B_{hkl} = \frac{M \ast L_{hk\ell}}{\cos(\alpha)}$$

B_{hkl} is hkl dependent broadening; $L_{hk\ell}$ represents characteristic length of the nano-crystal and α is the angle between (hkl) and (HKL) planes. This approach provides a physical background of the broadening and can explain individual FWHM of every peak. Finally analysis has quantified size and shape information of the nano-particles. The method is not only applied in β-Ni(OH)₂ analysis but also be used for TiO₂ nano-rods.