Thermal Scanning with Neutron Diffraction

Seung-Yub Lee1, Harley Skorpenske2, Alexandru D. Stoica2, Ke An2, Xun-Li Wang2, I. C. Noyan1

1Department of Applied Physics and Applied Mathematics, Columbia University, New York 10027, USA
2Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, TN 37983-6474, USA

We used spallation neutron diffraction for measuring strain distributions within the volume of stacked aluminum plates which contain thermal gradients. Under certain cases these strain data can be inverted to yield local temperatures which can, then, be used to characterize heat flow across buried interfaces. We present analytical and numerical formalisms that can be used for this purpose and discuss the possible errors in such analysis.