FORENSIC APPLICATION OF MICRO-XRF: DETERMINATION OF UNIQUE COMPOSITIONAL PATTERNS IN GLASSES: MULTIVARIATE APPROACH AND STATISTICAL ANALYSIS.

Sergey Mamedov, Ph.D, Horiba Scientific, 3880 Park Ave, Edison, New Jersey 08820, USA

X-Ray Fluorescence (XRF) spectroscopy is useful tool for identification substances and confirming their identity with little or no sample preparation. New capabilities of the energy dispersive XRF analytical microscope (micro-XRF) enable the recording not only spectra of small glass particles (as small as 50-100 microns) but also hyper-spectral image of any object with high spatial resolution (<10 micrometers). Hyper-spectral image is a set of the data which contain information about position of the point along with full XRF spectrum at this point. This means that the data can be mined for unsuspected elements after the measurements have been made, and that statistical method (multivariate analysis) can produce chemical distributions of the elements and/or material classification based on Principal Component Analysis, in particular, with association between elements that can aid in identification of bonded phases. For example, analysis of micro-XRF data for glasses can be used to locate the make, model, and year of car by analyzing a glass chip. This presentation will provide practical insights into the application of the micro-XRF to the analysis of glasses and soil.

The XRF analytical microscope was used in this study. This desktop unit utilizes a portable 50W X-ray source for excitation, two switchable monocapillaries for different spatial resolution, and the unique capability to work in vacuum (enhanced sensitivity for light elements), in partial vacuum, and under ambient conditions. In addition to the XRF spectrum/image, the XRF microscope provides a micro-transmission image of the material. Standard software package includes quantification using fundamental parameters method, basic statistical analysis for multi-point measurements, image analysis and image processing.

X-ray fluorescence spectrum of the glass strongly depends on X-ray optical system, sensitivity of the detector and accelerating voltage. In addition of that, background from the substrate will contribute to the spectrum of the small glass pieces because excitation X-ray penetrates through the glass and interacts with substrate. This effect becomes very importance for the particle size of 300 microns (or less) or powder. The change in the spectrum due to the shape or size will lead to the different quantification of the sample (different composition). We developed method which allows one to minimize this effect or take it into consideration. In this presentation we’ll show examples of the spectra from bulk material, small glass pieces and powder.

We collected and analyzed spectra of the glass from several cars manufactures and commercial glasses (microscope slides, window glasses, fuse glass) in the range of 1.00-40.96 keV (<400 spectra). Because the only few spectra have an additional features in the energy range above 15 keV, spectra were truncated and analysis was done in spectral range of 1.00—15 keV. Standard FPM algorithm without any correction and/or calibration was used to calculate concentration of oxides in all samples. This set of concentration was used to build a data set for PCA. All spectra and concentration data sets were scaled before Principal Component Analysis was applied. Correlation between classification based on spectral analysis and concentration analysis will be shown.