Structural study of the ball-milled Cr$_{80}$Co$_{20}$ alloy by the Rietveld refinement of XRD profiles

S. Louidi1,2,*, F. Z. Bentayeb2, J. J. Suñol3, L. Escoda3.

1Département des Sciences de la Matière, Facultés des Sciences, Université 20 Août 1955, B.P 26 Skikda, Algérie.
2 Laboratoire de Magnétisme et de Spectroscopie des Solides LM2S, Département de Physique, Faculté des Sciences, Université Badji-Mokhtar, B.P 12, 23000 Annaba, Algérie.
3Dep. De Fisica, Universitat de Girona, Campus de Montitlivi, Girona 17071, Spain.

*Corresponding author: louidisof@yahoo.fr

Abstract:

This work reports on the Rietveld refinement of X-ray diffraction profiles of a ball-milled Cr$_{80}$Co$_{20}$ mixture. Using the MAUD program, different fitted parameters such as lattice parameters, crystallite size, microstrains, dislocations density and phase fraction are studied as a function of milling time. The results show the formation of nanostructured bcc-Cr(Co) solid solution after 24h of milling. In addition, the obtained alloy contains a high density of defects.

Based on the deduced phase fraction from the Rietveld refinement of the XRD patterns, the Johnson-Mehl-Avrami model is used to study the formation kinetic of the nanostructured Cr$_{80}$Co$_{20}$ alloy.

Keywords: X-ray diffraction; Rietveld refinement; nanostructures; defects; kinetic.