Analytical Imaging of Batteries with X-ray Compton Scattering

Y. Sakuraia M. Itoua, M. Brancewiczb, H. Sakuraib, K. Suzukib, Y. Orikasac and Y. Uchimotoc

a Japan Synchrotron Radiation Research Institute, SPring-8, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
b Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan,
c Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan

Analytical imaging with X-ray Compton scattering is one of the newly developed techniques that enables the in-situ and operando observation of working batteries. By scanning the focused high-energy X-ray beams throughout the body of a battery, the variable amount of mobile ions is monitored by detecting Compton scattered X-rays. The detected X-rays are analysed in terms of its line-shape, and a parameter evaluated (called S-parameter), which varies with material composition, is employed for estimating ion concentration. In this paper we apply this technique to a commercial lithium battery (CR2032) under discharge and present a lithium migration behaviour in a quantitative manner.

Figure 1 shows the intensity map of Compton scattered X-rays for the discharging battery as a function of internal position and discharging time [1]. The values of S-parameter and lithium concentration x in Li\textsubscript{x}MnO\textsubscript{2} along the indicated line are in Fig.2. In this presentation the detail of this analytical imaging technique is also given.

This work is supported by the Development of Systems and Technology for Advanced Measurement and Analysis program under Japan Science and Technology Agency.

Fig.1 Intensity map of Compton scattered X-rays for discharging battery (CR2032).

Fig.2 S-parameter and Li concentration along the line A in Fig.1.