Quartz: structural and thermodynamic analyses across the $\alpha \leftrightarrow \beta$ transition with origin of negative thermal expansion (NTE) in β quartz and calcite

*S. M. Antao

Department of Geoscience, University of Calgary, Calgary, Alberta T2N 1N4, Canada. *E-mail: antao@ucalgary.ca

The temperature, T, variation of the crystal structure of quartz, SiO$_2$, from 298 to 1235 K was obtained with synchrotron powder X-ray diffraction data and Rietveld structure refinements. The polymorphic transformation from $P3_21$ (low-T, α quartz) to $P6_22$ (high-T, β quartz) occurs at a transition temperature, $T_{tr} = 847$ K. The T variations of spontaneous strains and several structural parameters are fitted to an order parameter, Q, using Landau theory. The change in Si atom coordinate, Si_x, gives $T_{tr} - T_c = 0.49$ K, which indicates an $\alpha \leftrightarrow \beta$ transition that is weakly first order and nearly tricritical in character ($Q^4 \propto T$). Strains give higher $T_{tr} - T_c$ values (≈ 7 K). Other fitted parameters are oxygen O$_z$ coordinate, Si-Si distance, Si-O-Si and ϕ angles, and intensity of the (111) reflection, I_{111}. In α quartz, the Si-Si distance increases with T because of cation repulsion, so the Si-O-Si angle increases (and ϕ decreases) and cause the thermal expansion of the framework structure that consists of corner-sharing distorted rigid SiO$_4$ tetrahedra. The Si-Si distances contract with T and cause negative thermal expansion (NTE) in β quartz because of increasing thermal librations of the O atom in the Si-O-Si linkage that occur nearly perpendicular to the Si-Si contraction. In calcite, CaCO$_3$, the short Ca-Ca distance expands with T, but the next-nearest Ca-Ca distance, which is of equal length to the a axis, contracts with T and causes NTE along the a axis. The thermal librations of the atoms in the rigid CO$_3$ group increase with T along the c axis.