TITLE: Healing X-ray scattering images.

AUTHOR NAMES: Jiliang Liua, Julien Lhermittea, Ye Tiana, Zheng Zhanga, Dantong Yub,c and Kevin G. Yagera *.

AUTHOR ADDRESS: aCenter for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA, bComputational Science Initiative, Brookhaven National Laboratory, Upton, New York 11973, USA, and cNew Jersey Institute of Technology, Newark, New Jersey 07102, USA.

AUTHOR EMAIL: jiliangliu@bnl.gov.

ABSTRACT: X-ray scattering is a powerful technique for measuring the structure of samples at the molecular and nano-scale. Scattering consists of shining a bright x-ray beam (e.g. from a synchrotron), and measuring the scattered rays on a two-dimensional detector. X-ray scattering images contain numerous gaps and defects arising from detector limitations and experimental configuration. We present a method to ‘heal’ X-ray scattering images, filling gaps in the data and removing defects. Unlike generic inpainting methods, this method is closely tuned to the known physics of scattering, and thus heals in a physically meaningful manner. We exploit statistical tests and symmetry analysis to identify the structure of an image; we then copy, average and interpolate measured data into gaps in a way that respects the identified structure and symmetry. Importantly, the underlying analysis methods provide useful characterization of structures present in the image, including the identification of diffuse versus sharp features, anisotropy and symmetry. Our method succeeds in filling gaps and healing defects in experimental images, including extending data beyond the original detector borders.

ACKNOWLEDGMENT: This research used resources of the Center of Functional Nanomaterials and the National Synchrotron Light Source II, which are US DOE office of Science Facilities, operated at Brookhaven National Laboratory under Contract No. DE-SC0012704. Experimental data used in this work were collected at the X9 beamline of NSLS and the Coherent Hard X-ray (CHX, 11-ID) and Complex Materials Scattering (CMS, 11-BM) beamlines at NSLS-II.