PLANETARY XRD/XRF BEYOND CHEMIN: NEW DEVELOPMENTS TOWARD SMALLER INSTRUMENTS.

P. Sarrazin¹, T. Bristow², D. Blake², M. Gailhanou³, J. Chen⁴, K. Zacny⁵

1- SETI Institute, Mountain View, CA, USA
2- NASA ARC, Moffett Field, CA, USA
3- CNRS, IM2NP UMR, Marseille, France
4- Baja Technology, Tempe, AZ, USA
5- Honeybee Robotics, Pasadena, CA, USA

The NASA CheMin XRD/XRF instrument (Figure 1) has been successfully deployed in the Mars Science Laboratory (MSL) mission for more than 5 years. CheMin established the quantitative mineralogy of the Mars soil, characterized the first habitable environment on another planet, and provided the first in-situ evidence of Martian silicic volcanism. CheMin is now employed in the characterization of the depositional and diagenetic environments of lacustrine mudstones that comprise the lower strata of Mt. Sharp. CheMin as-designed is restricted to Flagship-class missions like MSL due to its size, mass and power. Deployment of XRD/XRF on smaller rovers (MER type) and landers requires further miniaturization. For a decade, we have been developing new miniaturized flight components allowing smaller XRD/XRF instruments to be deployed in mission with reduced payload capacity compared to MSL. Several proto-flight instrument developments will be presented, targeting specific planetary applications to the Moon (Figure 2), Mars (Figure 3) and Venus.