Investigating coin cell processes in transmission geometry on a laboratory diffractometer

Thomas Hartmann, STOE & Cie GmbH, Darmstadt, Germany

The structural analysis of electrode materials during a charge/discharge cycle in battery cells using X-ray diffraction became more and more popular over the last years. Once starting at the synchrotrons, a wide variety of self-made battery cell holders in reflection or transmission geometry found their way into the laboratories. As commercially available solutions are only built for pouch cells and mostly for Bragg/Brentano goniometers, a commercial coin cell setup for transmission geometry still had to be developed.

Based on the studies of the Institute for Materials Science of Darmstadt University of Technology [1], the Institute for Applied Materials (IAM) at the Karlsruhe Institute of Technology (KIT) and the Leibnitz Institute for Solid State and Materials Research (IFW) Dresden [2, 3], STOE & Cie GmbH in Darmstadt, Germany, now offers such a sample holder.

The new coin cell sample holder and data measured on a STOE STADI P in transmission geometry, equipped with a sealed Ag- or Mo-tube, a Ge(111)-monochromator for pure Kα₁-radiation and the Dectris MYTHEN2 detector with 1 mm chip thickness including an explanation of the measuring strategy will be presented.