Super-resolution task was, traditionally, completed by making use of interpolation method or dictionary learning based optimization technique. However, the ever-increasing scope of machine learning meant that the resolution enhancement problem was re-visited and is, now, solved making use of convolutional neural networks (CNNs). A straightforward comparison of results from these approaches (on natural images) reveals that the CNN approach outperforms other conventional methods. These results have opened avenues to scale-up low resolution X-ray images to deduce results on-par with the high resolution images whose acquisition still remain challenging. Some of the difficulties acquiring high-resolution X-ray scan as compare to the low-resolution scan include motion/drift artifacts, beam damage and limited field of view. Accordingly, in this contribution, we will present our implementation of the CNN method to enhance the resolution of X-ray dataset. More concretely, we will emphasize on the formulation of network architecture, quantitative metrics and computation tools used to, faithfully, perform the scale-up analysis.