Total reflection X-ray fluorescence (TXRF) analysis of real samples, which might exceed the critical thickness; suffer from absorption effects, leading to diminished response with a lower count rate. This is critical in quantitative analysis, especially if external calibration is applied, as it is in the detection of impurities in Si wafers. It is beneficial for such a quantitative analysis to be able to correct for those errors. Therefore it is required for the sample to have a much defined structure. This can be provided by an array of pL-droplets from a Ni-standard solution, which was analyzed by synchrotron-TXRF at BAM line @ BESSY II (Berlin, Germany). A color X-ray camera with an ultrafast readout pnCCD detector chip and equipped with polycapillary optics provided full field spatial resolution. Experiments like this give very good results that were reported and presented at this conference in the past years. New measurements with advanced analysis allows a subpixel calculation model to improve the spatial resolution, which makes it a lot easier to distinguish between the droplets of the array. This improvement can be seen in Figure 1. The experimental results are compared to three different calculation models with good agreement.