2021 Virtual
Denver X-ray
Conference
2-6 August
A Virtual Event
2021-08-02 9:00:00
Register
Submit Abstract
  • SUBMIT
  • Presenter Guidelines
  • Home
  • Program
  • Exhibits
  • Students
  • Guidelines
  • About DXC
    • About
    • Awards
      • Jenkins
      • Barrett
      • Birks
      • Cohen
      • Snyder
    • Past DXC
    • DXC Organizing Committee
    • Contact
  • Home
  • Program
  • Exhibits
  • Students
  • Guidelines
  • About DXC
    • About
    • Awards
      • Jenkins
      • Barrett
      • Birks
      • Cohen
      • Snyder
    • Past DXC
    • DXC Organizing Committee
    • Contact
Program

DXC program

CALL FOR PAPERS

Deadline for Submission of Abstracts: 15 April 2021

Welcoming papers in all areas of X-ray analysis.  The size and congeniality of the conference make it ideal for
presenting your work, interacting with colleagues, and seeking the advice of experts.
Session Chairs, Invited Speakers, and Session Descriptions are listed below.
Updates will be posted as they become available. The complete Program will be announced by June 2021.

SESSIONS

Plenary Session

Featured Speakers:

Metal Halide Perovskites for Solar Photovoltaic Applications:  A Neutron Perspective
P. Gehring
,
National Institute of Standards and Technology, USA

Time Resolved X-ray Absorption Spectroscopy and Coded Aperture Full Field XRF Imaging

A. Kulow, Néel Institute, France

M. Manley, L. Coates, Oak Ridge National Laboratory, USA

The Lithium Battery: The Origins to Domination the Role of Structure and Disorder
S. Whittingham, SUNY at Binghamton Materials Research Center, USA

SPECIAL TOPICS IN X-RAY ANALYSIS

New Developments in XRD/XRF Instrumentation
(vendor/commercial presentations permitted)

Chairs:
T. Fawcett, Emeritus, ICDD, USA, dxcfawcett@outlook.com
A. Drews, Ford Motor Company, USA, adrews@ford.com

Abstracts should be submitted by technical representatives of a manufacturer. They should discuss specifications, and applications concerning one of their newest and most important products. Talks should include comments about software, XRD and XRF equipment, and accessories. No mention of prices or a comparison with competitors’ products can be included.


X-ray Absorption Spectroscopy (XAS)

Chair: S. Seshadri, Sigray, USA, srivatsan.seshadri@sigray.com

This special session will showcase the latest developments in the XAS instrumentation and Qualitative and Quantitative Analyses of materials using X-ray Absorption Spectroscopy. The scope of instrumentation includes new developments in X-ray optics, laboratory X-ray sources, detectors and Machine Learning techniques to accurately interpret and classify X-ray Absorption spectra. The materials studied can include, but not limited to, energy storage materials, catalysts, semiconductors, biological materials and metallodrugs.

Invited Speakers:
Procedures to Study Vanadium Crossover in Hydrated Nafion™ Through-Plane with Micro X-ray Absorption Near-Edge Structure Spectroscopy
U.E.A. Fittschen
, TU Clausthal, Germany

P. Kennepohl, University of Calgary, Canada


Imaging

Chairs:
T. Sun, University of Virginia, USA, ts7qw@virginia.edu
L. A. Leung, University of College London, United Kingdom, alex.leung@ucl.ac.uk

Session description coming soon.


Machine Learning Techniques in X-ray Analysis

Chairs:
A. Mehta, SLAC, SSRL, USA, mehta@slac.stanford.edu
M. Cherukara, Argonne National Laboratory, USA, mcherukara@anl.gov

The capabilities provided by next generation light sources along with the development of new characterization techniques and detector advances are expected to dramatically increase the complexity and volume of data generated by instruments at the new light sources. Traditional techniques of data reduction and analysis will not be able to keep pace. Machine learning methods applied to a variety of X-ray characterization techniques have shown promise in accelerating, and in some cases improving the accuracy of X-ray data inversion, abstraction and inference. This workshop is being organized to discuss the current state and potential of machine learning methods applied to synchrotron and XFEL data.


Cultural Heritage

Chair: M. Schmeling, Loyola University of Chicago, USA, mschmel@luc.edu

This session covers all aspects of X-ray analysis related to objects of cultural heritage such as paintings, sculptures, manuscripts, and buildings. Presentations involving multiple methods like XRF and XRD or XRF and Raman Spectroscopy are highly encouraged.

Invited Speaker:
The Use of Handheld XRF to Identify Foundries used by the Sculptor Anton van Wouw (1862-1945)
M. Loubser,
University of Pretoria, USA


XRF & XRD in Construction Materials

Chair: S. Vaidya, CTL Group, USA, svaidya@ctlgroup.com

X-ray analytical tools continue to gain applications throughout the construction industry, all the way from QA/QC in material production to failure investigations. As such, this session solicits presentations involving various X-ray techniques employed in construction materials’ production, quality testing, and failure mechanism investigations.


Industrial Applications of XRD & XRF

Chair: D. Broton, CTLGroup, USA, dbroton@ctlgroup.com

The Industrial Applications session includes both x-ray fluorescence and x-ray diffraction analyses as used by industry scientists.  Many new approaches are presented for pressed powder, fusion, liquid, and metal analyses.  The idea behind this session is to showcase the general approaches used in x-ray analyses for a variety of applications and material types. Even theoretical approaches are encouraged as presentations as the audience is a well-informed group of forward thinkers constantly looking to improve their techniques as well as help guide the next generation of x-ray spectroscopists through interactions both before, during and after the session.  Sometimes it is who you know that makes your job easier and this session has some of the top scientists in attendance.


Functional Materials

Chair: F. Meirer, Debye Institute for Nanomaterials Science, Utrecht University, The Netherlands, f.meirer@uu.nl

This session covers all aspects of X-ray analysis related to functional materials such as batteries, catalysts, solar cells, and semiconductor materials. Special emphasis will be put on in-situ or operando studies as well as multi-technique approaches such as XRF and XRD, XRF and vibrational spectroscopy, or X-ray and Electron microscopy.

Invited Speakers:
Instrumental developments at the X-ray Center at TU Wien
K. Hradil, TU Wien X-ray Center, Austria

M. Nachtegaal, Paul Scherrer Institute, Switzerland


Non-ambient Analysis

Chair: B. Wheaton, Corning Incorporated, USA, wheatonbr@corning.com

This session covers all aspects of non-ambient analysis and techniques to gain knowledge of the behavior of materials under various conditions.  Presentations involving use of non-ambient analysis techniques are encouraged.

Invited Speakers:
K.H. Stone, SLAC National Accelerator Laboratory, USA

Non-Ambient X-ray Diffraction – A Further Dimension in Crystallography
B. Puhr, Anton Paar GmbH, Austria

X-RAY DIFFRACTION TOPICS

General XRD

Chair: C. Murray, IBM T.J. Watson Research Center, USA, conal@us.ibm.com

Welcoming abstracts in all areas of X-ray diffraction and related techniques.


Advanced Total Scattering Methods for Complex Material Studies

Chairs:
B. Aoun, USA, bachir.aoun@e-aoun.com
K. Page, University of Tennessee Knoxville, USA, kpage@ati.ac.at

Next generation materials of nearly every kind rely on chemical, electronic, and/or magnetic heterogeneity for creating, harnessing, and controlling their functionality. Exploration of these phenomena increasingly involve multiple length-scale scattering probes and require sophisticated modeling approaches to characterize and understand them. Total scattering methods, including both Bragg and diffuse scattering signals, are providing key insights into how long-range, nanoscale, and local atomic structure motifs differ and deliver unique properties. The nuances of capturing nanoscale heterogeneities, including correlated defects, chemical short-range order, stacking fault distributions, etc. represent a modern frontier in the field of crystallography. This session will highlight a collection of new and evolving data modeling techniques and feature exemplary applications, including chemical reaction pathways, energy storage technologies, catalysis and sorption processes, quantum materials, and more.  An associated workshop will provide hands-on data modeling tutorials for two evolving software packages- FullRMC and DISCUS.

Invited Speakers:
I. Levin, National Institute of Standards and Technology, USA
V. Petkov, Central Michigan University, USA


Quantitative Phase Analysis

Chair: J. Kaduk, Poly Crystallography, Inc., USA, kaduk@polycrystallography.com

This session will include presentations on recent progress on methods for quantitative phase analysis.  Talks giving examples of quantitative phase analysis, and especially quantification of amorphous phases, are welcome.

Invited Speaker:
Quantitative Measurement of the Degree of Crystallinity of Polymer Composited With Crystalline and Non-Crystalline Fillers
H. Toraya, Rigaku Corporation, Japan


Stress Analysis

Chair: T.R. Watkins, Oak Ridge National Laboratory, USA, watkinstr@ornl.gov

The Stress Analysis session seeks to provide a forum to display and discuss the latest techniques and analyses for stress work using diffraction across a broad range of applications.  Contributions are also sought from related areas that impact stress analysis including but not limited to texture, elasticity, statistics, validation, modelling, etc.

Keywords: Stress, Strain, in-situ, x-ray, neutron.

Invited Speaker:
Jun-Sang Park, Argonne National Laboratory, USA, parkjs@anl.gov

X-RAY FLUORESCENCE TOPICS

General XRF

Chair: U. Fittschen, TU Clausthal, Clausthal-Zellerfeld, Germany, ursula.fittschen@tu-clausthal.de

Authors are invited to submit X-ray fluorescence and related X-ray technique papers to the general XRF session. Such papers on topics that do not fit well into other specific sessions can be submitted to the General XRF session.

Invited Speakers:
G. Peaslee
, University of Notre Dame, USA

Stoichiometric Calculation of Lithium-Containing Phases Based On Spatially Resolved X-ray Analysis and Virtual Compounds
T. Schirmer, Institute of Disposal Research, Clausthal University of Technology, Germany


Trace Analysis including TXRF

Chair: M. Krämer, AXO Dresden GmbH, Germany, markus.kraemer@axo-dresden.de

The general subject of this session is how useful are x-rays for trace and ultra-trace element analysis and contents of contributed papers should be dealing with the analysis of environmental, medical, technical, forensic and art samples wherever trace element play an important role. Papers are welcome with presentations of most modern techniques and instrumentation for trace element analysis using EDXRF or WDXRF. Papers dealing with methods to improve the detection limits in XRF either by background reduction or application of new X-ray sources in combination with X-ray optics for lab and synchrotron radiation are welcome. Presentations dealing with the developments extending the detectable elemental range down to light elements (eg. Carbon) are also interesting for this session.

Invited Speaker:
Rainer Unterumsberger, Physikalisch-Technische Bundesanstalt (PTB), Germany


Quantitative Analysis of XRF

Chair: L.L. Brehm, Dow, Retired, USA, lora.brehm@dupont.com

Papers accepted for presentation in the Quantitative XRF Session should discuss applications of quantitative XRF (any type of XRF technology), and/or in general key parameters or novel ideas related to improving methods for quantitative XRF.

Invited Speakers:
Quantitative Characterization of Advanced Materials at the Nanoscale by X-ray Spectrometry Using Calibrated Instrumentation
B. Beckhoff, Physikalisch-Technische Bundesanstalt (PTB), Germany

Elemental Quantification Software for the Planetary Instrument for X-ray Lithochemistry
W. T. Elam
, Applied Physics Lab, University of Washington, USA

The Mars 2020 Mission and the Elemental Calibration of the Planetary Instrument for X-ray Lithochemistry (PIXL)
C. Heirwegh, Jet Propulsion Laboratory, California Institute of Technology, USA

Abstracts are hereby solicited for oral presentations in any of the sessions listed, or the XRD or XRF poster sessions. Poster session dates and times will be announced in the complete Conference program.

SUBMIT ABSTRACT

WORKSHOPS

  • Machine Learning Techniques in X-ray Analysis
  • Imaging
  • Non-ambient XRD
  • Material Identification
  • Advanced PDF Modelling
  • Intermediate to Advanced XRD
  • Quantitative Phase Analysis
  • Basic XRF
  • Micro XRF
  • Trace Analysis
  • Layered Structures
  • Quantitative Analysis of XRF – full day
  • Sample Preparation of XRF
  • Handheld XRF
  • EDS Detectors
2021 Denver X-ray Conference

Attendees to the World's largest X-ray conference have access to sessions on the latest advancements in XRD and XRF. Workshops are run by experts who provide training and education on many practical applications of X-ray fluorescence and X-ray diffraction techniques for the study of materials.

DXC provides a unique mixture of sessions on training, education, and applications, including state-of-the-art techniques and future developments in
X-ray analysis.
_______________________________________________________
2022 Denver X-ray Conference will be held 1 - 5 August 2022, at the Bethesda North Marriott Hotel & Conference Center in Rockville, Maryland, USA

Search
Contact
dxc@icdd.com
Sponsored by

ICDD & MDI

Whova for DXC

Download the Whova App and join us for the
DXC 2021 experience!

© 1997 - 2021 by JCPDS - International Centre for Diffraction Data® of this page and all contents. All Rights Reserved.