Luminescent Properties, X-ray photoelectron and X-Ray Absorption Spectroscopy Study of Antimony Doped P-type ZnO Nanowires

A. M. Alsmadi1 and B. Salameh1

1Department of Physics, Kuwait University, 13060 Safat, Kuwait

Abstract

Zinc oxide (ZnO) is an extensively studied semiconductor due to its versatile properties applicable to many technologies, including electronic and optoelectronics [1]. Research has been conducted on Sb doped ZnO thin films with the intent of achieving p-type conductivity [2]. However, the instability of the thin films, non-uniform doping and the impurity phases present in these thin films have been a barrier to performing systematic and accurate studies of photoelectrical properties. Compared to ZnO thin films, ZnO nanowires have many interesting properties, such as single crystalline and high optical quality [3]. In this study, we synthesized Sb-doped ZnO (ZnO:Sb) nanowires with varying Sb content and carried out a systematic study on their structural, optical and photoluminescent properties. The x-ray absorption spectroscopy (XAS) and x-ray photoelectron spectroscopy (XPS) results indicated the incorporation of Sb dopants into the ZnO lattice. XPS and x-ray diffraction (XRD) analysis with full structural Rietveld refinement revealed that all ZnO:Sb nanowires with different Sb doping possessed typical wurtzite structure and had no other impurity phases. The XAS and XPS results showed that Sb ions are in an oxidation state between 3+ and 5+, indicating the presence of the \((\text{Sb}_{\text{Zn}}-2\text{V}_{\text{Zn}})\) acceptor complex in the ZnO:Sb nanowires. Photoluminescence (PL) measurements confirmed the formation of shallow acceptor levels in the ZnO:Sb nanowires. Strong violet luminescence, originating from free-electron to acceptor level (FA) transitions, was identified by temperature-dependent PL measurements. The FA emission showed a slight blue shift with the increase of the temperature. As a result of Sb incorporation into the ZnO lattice, we observed a red shift in the ZnO:Sb nanowires energy gap with the increase of Sb doping. The results provide strong promise of p-type conductivity of ZnO by Sb doping.