A novel, four-element silicon drift detector (SDD) array (the Vortex-ME4™) has been developed for x-ray fluorescence (XRF) applications requiring a large detection area, such as fast XRF imaging and x-ray absorption spectroscopy (XAS) using synchrotron radiation. The new compact SDD array spectrometer, cooled without liquid nitrogen (LN), can replace traditional, bulky, LN-cooled multi-element germanium detectors. The SDD element is fabricated on ~ 0.35 mm thick, high resistivity n-type silicon with an active area of ~ 42 mm², featuring extremely low capacitance (~ 0.06 pF) and excellent energy resolution (< 130 eV FWHM, at 5.9 keV and optimum peaking time). The SDDs also feature a very short signal rise time (< 100 ns) allowing for pulse processing using very short peaking times (~ 0.25 µs) to achieve very high signal throughput (up to 500 kcps output rate). The four-element SDD array, offers a total active area of ~ 170 mm² with a maximum output rate up to 1.5 – 2 Mcps.

Vacuum-sealed with a 12.5 µm thick beryllium window, the four SDD elements are in a square arrangement around the center and are cooled using separate Peltier coolers, with the heat removed through an innovative heat pipe heat transfer system. The SDD array spectrometer utilizes the X-Ray Instrumentation Associates 4-channel digital pulse processor, (the DXP xMAP system), in conjunction with the National Instruments PXI/CompactPCI module, offering 4 MB on-board high speed memory and ~100 MB/s data transfer speed. Figure 1 shows the external and internal views of the Vortex-ME4™. Performance and application data from the new Vortex-ME4™ will be presented.
The Authors give permission to post the abstract on the DXC website and affiliated web sites.

Speaker and corresponding author:
Liangyuan Feng
SII NanoTechnology USA, Inc
19865 Nordhoff St.
Northridge CA 91324 USA
Ph: 818-280-0745, ext. 120
Fax: 818-280-0408
E-mail: lfeng@siintusa.com
Preference: Oral XRF session

Yes, we plan to publish it in the Adv. In X-ray Analysis vol. 51.