High-Energy Micro-Focusing by Meridionally-Bent Laue Crystals

Ulrich Lienert
Argonne National Laboratory
Argonne, IL 60439, USA
lienert@aps.anl.gov

It is well-known that meridional focusing can be achieved by bent Laue crystals when the source and image points are outside and inside the Rowland circle, respectively. Third-generation high-energy synchrotron facilities provide intense high-energy x-ray beams and a small vertical electron beam source size. In combination with large demagnification ratios (source distance divided by image distance), high-energy micro-focusing is therefore achievable. The Laue geometry is attractive as the crystal surfaces are almost perpendicular to the x-ray beam, resulting in a short footprint on the crystal, minimizing aberration effects. At the same time, crystal bending enlarges the bandwidth, resulting in a welcome flux increase. Unfortunately, it also results in a "thickness-broadening" of the ideal focus size. It is shown that this thickness-broadening can be avoided by an appropriate asymmetric cut of the bent Laue crystal. Practical implications of this optic's use in diffraction studies of polycrystalline samples are discussed.

This work is supported, in part, by the U.S. Dept. of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.